(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

*(i(x), x) → 1
*(1, y) → y
*(x, 0) → 0
*(*(x, y), z) → *(x, *(y, z))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

*(i(z0), z0) → 1
*(1, z0) → z0
*(z0, 0) → 0
*(*(z0, z1), z2) → *(z0, *(z1, z2))
Tuples:

*'(*(z0, z1), z2) → c3(*'(z0, *(z1, z2)), *'(z1, z2))
S tuples:

*'(*(z0, z1), z2) → c3(*'(z0, *(z1, z2)), *'(z1, z2))
K tuples:none
Defined Rule Symbols:

*

Defined Pair Symbols:

*'

Compound Symbols:

c3

(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

*'(*(z0, z1), z2) → c3(*'(z0, *(z1, z2)), *'(z1, z2))
We considered the (Usable) Rules:

*(i(z0), z0) → 1
*(1, z0) → z0
*(z0, 0) → 0
*(*(z0, z1), z2) → *(z0, *(z1, z2))
And the Tuples:

*'(*(z0, z1), z2) → c3(*'(z0, *(z1, z2)), *'(z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(*(x1, x2)) = [4] + [4]x1 + [4]x2   
POL(*'(x1, x2)) = [4] + [4]x1   
POL(0) = [4]   
POL(1) = [3]   
POL(c3(x1, x2)) = x1 + x2   
POL(i(x1)) = [2]   

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

*(i(z0), z0) → 1
*(1, z0) → z0
*(z0, 0) → 0
*(*(z0, z1), z2) → *(z0, *(z1, z2))
Tuples:

*'(*(z0, z1), z2) → c3(*'(z0, *(z1, z2)), *'(z1, z2))
S tuples:none
K tuples:

*'(*(z0, z1), z2) → c3(*'(z0, *(z1, z2)), *'(z1, z2))
Defined Rule Symbols:

*

Defined Pair Symbols:

*'

Compound Symbols:

c3

(5) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(6) BOUNDS(O(1), O(1))